Dynalene BioGlycol Series Overview

Dynalene BioGlycol products are comprised of inhibited and uninhibited BioGlycol (1,3-propanediol) solutions. We offer both inhibited and uninhibited products made from technical grade BioGlycol, as well as uninhibited food grade BioGlycol with purity greater than 99.9%. It is a domestically produced, non-toxic, renewably sourced fluid and provides 30% lower viscosity at low temperatures than traditional petroleum-derived propylene glycol. Dynalene BioGlycol offers greater thermal stability while possessing similar or better thermophysical properties than both ethylene and propylene glycols. It offers better performance than propylene glycol while giving its users an environmentally safer product than ethylene glycol. We only use high quality virgin glycol in our products, never recycled. All raw materials are tested and approved by our quality control department prior to use.

Properly used and maintained, Dynalene BioGlycols provide excellent thermophysical properties while protecting your system from corrosion and degradation. Each individual BioGlycol-based product has its own advantages, and custom blends can be readily made to meet your system’s requirements.

Product Description

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynalene BioGlycol</td>
<td>Inhibited BioGlycol</td>
<td>-50°F to 350°F / -46°C to 177°C</td>
</tr>
<tr>
<td>Dynalene Raw BioGlycol</td>
<td>Uninhibited BioGlycol</td>
<td>-50°F to 350°F / -46°C to 177°C</td>
</tr>
<tr>
<td>Dynalene Raw BioGlycol FG</td>
<td>Uninhibited food grade BioGlycol</td>
<td>-50°F to 350°F / -46°C to 177°C</td>
</tr>
</tbody>
</table>

Corrosion Protection

Dynalene’s inhibited BioGlycol products utilize a unique corrosion inhibitor package made from non-toxic raw materials. These inhibitors offer superior corrosion protection for most metals including carbon steel, brass, copper, stainless steel, cast iron, and many other alloys by creating a passive layer on the surface that contacts the Dynalene BioGlycol and prevents corrosion from forming. It also stabilizes the pH of the fluid, keeping it in the range that is suitable for the metals in your system.

Quantity & Availability

Dynalene BioGlycol products are offered in 1, 2.5, 5, 30, 55, and 265-gallon containers as well as 5,000-gallon tankers. Pricing depends on quantity, and Dynalene, Inc. will work with you to try to fit your budget.

Dynalene’s Fluid Care Program

Coupling our Dynalene fluids with a fluid care program can extend the life of your systems significantly. We offer yearly testing of the heat transfer fluid in your system and can track changes in the fluid year to year so adjustments can be made to keep your system working at its best.

Freezing points of BioGlycol solutions:

<table>
<thead>
<tr>
<th>Vol% BioGlycol</th>
<th>Freezing Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-2°C (29°F)</td>
</tr>
<tr>
<td>15</td>
<td>-4°C (25°F)</td>
</tr>
<tr>
<td>25</td>
<td>-9°C (16°F)</td>
</tr>
<tr>
<td>35</td>
<td>-15°C (5°F)</td>
</tr>
<tr>
<td>50</td>
<td>-27°C (-17°F)</td>
</tr>
<tr>
<td>65</td>
<td>-46°C (-50°F)</td>
</tr>
<tr>
<td>75</td>
<td>-49°C (-57°F)</td>
</tr>
<tr>
<td>85</td>
<td>-53°C (-64°F)</td>
</tr>
</tbody>
</table>

Dynalene recommends using deionized water when blending glycol-water mixtures:

<table>
<thead>
<tr>
<th>Water Ion</th>
<th>Dynalene Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>< 25 ppm</td>
</tr>
<tr>
<td>Sulfate</td>
<td>< 25 ppm</td>
</tr>
<tr>
<td>Other</td>
<td>< 50 ppm</td>
</tr>
</tbody>
</table>
General Properties

<table>
<thead>
<tr>
<th></th>
<th>Dynalene BioGlycol</th>
<th>Dynalene Raw BioGlycol</th>
<th>Dynalene Solar Glycol-XT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (50% BioGlycol)</td>
<td>8.5 – 9.5</td>
<td>8.5 – 9.5</td>
<td>9.5 – 10.5</td>
</tr>
<tr>
<td>Reserve Alkalinity (50% BioGlycol)</td>
<td>>10.5 mL</td>
<td>0 mL</td>
<td>>25.0 mL</td>
</tr>
<tr>
<td>Operating Range (50% BioGlycol)</td>
<td>-50 to 350°F</td>
<td>-50 to 350°F</td>
<td>-50 to 350°F</td>
</tr>
<tr>
<td>Flash Point (50% BioGlycol)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Color</td>
<td>Clear</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td>Odor</td>
<td>Little or none</td>
<td>Little or none</td>
<td>Little or none</td>
</tr>
</tbody>
</table>

Viscosity (cP)

1 cP = 0.001 Pa·s

<table>
<thead>
<tr>
<th>Temp, °F</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10.9</td>
<td>14.7</td>
<td>18.4</td>
<td>21.3</td>
<td>24.2</td>
<td>30.7</td>
<td>37.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.10</td>
<td>6.80</td>
<td>8.60</td>
<td>11.4</td>
<td>14.1</td>
<td>16.5</td>
<td>18.8</td>
<td>23.3</td>
<td>27.8</td>
</tr>
<tr>
<td>20</td>
<td>4.12</td>
<td>5.47</td>
<td>6.81</td>
<td>8.81</td>
<td>10.8</td>
<td>12.7</td>
<td>14.6</td>
<td>18.1</td>
<td>21.6</td>
</tr>
<tr>
<td>30</td>
<td>3.38</td>
<td>4.40</td>
<td>5.42</td>
<td>6.91</td>
<td>8.39</td>
<td>9.95</td>
<td>11.5</td>
<td>14.2</td>
<td>16.9</td>
</tr>
<tr>
<td>40</td>
<td>2.81</td>
<td>3.59</td>
<td>4.37</td>
<td>5.46</td>
<td>6.55</td>
<td>7.81</td>
<td>9.07</td>
<td>11.2</td>
<td>13.3</td>
</tr>
<tr>
<td>50</td>
<td>2.35</td>
<td>2.96</td>
<td>3.56</td>
<td>4.87</td>
<td>5.18</td>
<td>6.20</td>
<td>7.22</td>
<td>8.86</td>
<td>10.5</td>
</tr>
<tr>
<td>60</td>
<td>1.99</td>
<td>2.46</td>
<td>2.93</td>
<td>3.54</td>
<td>4.15</td>
<td>4.98</td>
<td>5.80</td>
<td>7.10</td>
<td>8.40</td>
</tr>
<tr>
<td>70</td>
<td>1.70</td>
<td>2.07</td>
<td>2.44</td>
<td>2.91</td>
<td>3.38</td>
<td>4.05</td>
<td>4.72</td>
<td>5.73</td>
<td>6.73</td>
</tr>
<tr>
<td>80</td>
<td>1.47</td>
<td>1.77</td>
<td>2.06</td>
<td>2.43</td>
<td>2.79</td>
<td>3.34</td>
<td>3.89</td>
<td>4.67</td>
<td>5.44</td>
</tr>
<tr>
<td>90</td>
<td>1.28</td>
<td>1.52</td>
<td>1.76</td>
<td>2.05</td>
<td>2.34</td>
<td>2.80</td>
<td>3.25</td>
<td>3.86</td>
<td>4.46</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
<td>1.17</td>
<td>1.33</td>
<td>1.53</td>
<td>1.72</td>
<td>2.04</td>
<td>2.36</td>
<td>2.74</td>
<td>3.12</td>
</tr>
<tr>
<td>120</td>
<td>0.80</td>
<td>0.92</td>
<td>1.04</td>
<td>1.19</td>
<td>1.34</td>
<td>1.58</td>
<td>1.81</td>
<td>2.06</td>
<td>2.31</td>
</tr>
<tr>
<td>140</td>
<td>0.67</td>
<td>0.76</td>
<td>0.85</td>
<td>0.97</td>
<td>1.09</td>
<td>1.27</td>
<td>1.45</td>
<td>1.63</td>
<td>1.81</td>
</tr>
<tr>
<td>160</td>
<td>0.57</td>
<td>0.64</td>
<td>0.71</td>
<td>0.82</td>
<td>0.93</td>
<td>1.07</td>
<td>1.21</td>
<td>1.36</td>
<td>1.50</td>
</tr>
<tr>
<td>180</td>
<td>0.49</td>
<td>0.56</td>
<td>0.62</td>
<td>0.73</td>
<td>0.83</td>
<td>0.95</td>
<td>1.06</td>
<td>1.19</td>
<td>1.32</td>
</tr>
<tr>
<td>200</td>
<td>0.44</td>
<td>0.50</td>
<td>0.55</td>
<td>0.66</td>
<td>0.77</td>
<td>0.87</td>
<td>0.96</td>
<td>1.09</td>
<td>1.22</td>
</tr>
<tr>
<td>220</td>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
<td>0.62</td>
<td>0.73</td>
<td>0.81</td>
<td>0.89</td>
<td>1.04</td>
<td>1.19</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynalene, Inc. (610) 262-9686 info@dynalene.com dynalene.com
Thermal Conductivity (Btu/hr·ft·°F)

<table>
<thead>
<tr>
<th>Temp, °F</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.188</td>
<td>0.181</td>
<td>0.174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.191</td>
<td>0.184</td>
<td>0.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.211</td>
<td>0.203</td>
<td>0.194</td>
<td>0.186</td>
<td>0.178</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>0.235</td>
<td>0.225</td>
<td>0.215</td>
<td>0.206</td>
<td>0.196</td>
<td>0.188</td>
<td>0.179</td>
</tr>
<tr>
<td>20</td>
<td>0.262</td>
<td>0.251</td>
<td>0.239</td>
<td>0.229</td>
<td>0.218</td>
<td>0.209</td>
<td>0.199</td>
<td>0.190</td>
<td>0.181</td>
</tr>
<tr>
<td>30</td>
<td>0.267</td>
<td>0.255</td>
<td>0.243</td>
<td>0.233</td>
<td>0.222</td>
<td>0.212</td>
<td>0.201</td>
<td>0.192</td>
<td>0.183</td>
</tr>
<tr>
<td>40</td>
<td>0.272</td>
<td>0.260</td>
<td>0.247</td>
<td>0.236</td>
<td>0.225</td>
<td>0.215</td>
<td>0.204</td>
<td>0.194</td>
<td>0.184</td>
</tr>
<tr>
<td>50</td>
<td>0.277</td>
<td>0.264</td>
<td>0.251</td>
<td>0.239</td>
<td>0.227</td>
<td>0.217</td>
<td>0.206</td>
<td>0.196</td>
<td>0.186</td>
</tr>
<tr>
<td>60</td>
<td>0.281</td>
<td>0.268</td>
<td>0.254</td>
<td>0.242</td>
<td>0.230</td>
<td>0.219</td>
<td>0.208</td>
<td>0.198</td>
<td>0.187</td>
</tr>
<tr>
<td>70</td>
<td>0.285</td>
<td>0.272</td>
<td>0.258</td>
<td>0.246</td>
<td>0.233</td>
<td>0.222</td>
<td>0.210</td>
<td>0.199</td>
<td>0.188</td>
</tr>
<tr>
<td>80</td>
<td>0.289</td>
<td>0.275</td>
<td>0.261</td>
<td>0.248</td>
<td>0.235</td>
<td>0.223</td>
<td>0.211</td>
<td>0.200</td>
<td>0.189</td>
</tr>
<tr>
<td>90</td>
<td>0.292</td>
<td>0.278</td>
<td>0.263</td>
<td>0.250</td>
<td>0.237</td>
<td>0.225</td>
<td>0.213</td>
<td>0.202</td>
<td>0.190</td>
</tr>
<tr>
<td>100</td>
<td>0.295</td>
<td>0.281</td>
<td>0.266</td>
<td>0.253</td>
<td>0.239</td>
<td>0.227</td>
<td>0.214</td>
<td>0.203</td>
<td>0.191</td>
</tr>
<tr>
<td>120</td>
<td>0.298</td>
<td>0.283</td>
<td>0.268</td>
<td>0.255</td>
<td>0.241</td>
<td>0.228</td>
<td>0.215</td>
<td>0.204</td>
<td>0.192</td>
</tr>
<tr>
<td>140</td>
<td>0.306</td>
<td>0.290</td>
<td>0.274</td>
<td>0.260</td>
<td>0.245</td>
<td>0.232</td>
<td>0.218</td>
<td>0.206</td>
<td>0.194</td>
</tr>
<tr>
<td>160</td>
<td>0.309</td>
<td>0.293</td>
<td>0.277</td>
<td>0.262</td>
<td>0.247</td>
<td>0.234</td>
<td>0.220</td>
<td>0.207</td>
<td>0.194</td>
</tr>
<tr>
<td>180</td>
<td>0.312</td>
<td>0.296</td>
<td>0.279</td>
<td>0.264</td>
<td>0.249</td>
<td>0.235</td>
<td>0.221</td>
<td>0.208</td>
<td>0.195</td>
</tr>
<tr>
<td>200</td>
<td>0.314</td>
<td>0.297</td>
<td>0.280</td>
<td>0.265</td>
<td>0.249</td>
<td>0.235</td>
<td>0.221</td>
<td>0.208</td>
<td>0.194</td>
</tr>
<tr>
<td>220</td>
<td>0.314</td>
<td>0.297</td>
<td>0.280</td>
<td>0.265</td>
<td>0.249</td>
<td>0.235</td>
<td>0.220</td>
<td>0.207</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Specific Heat (Btu/lb·°F)

<table>
<thead>
<tr>
<th>Temp, °F</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.740</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.790</td>
<td>0.770</td>
<td>0.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.840</td>
<td>0.820</td>
<td>0.800</td>
<td>0.775</td>
<td>0.750</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>0.890</td>
<td>0.870</td>
<td>0.850</td>
<td>0.830</td>
<td>0.810</td>
<td>0.785</td>
<td>0.760</td>
</tr>
<tr>
<td>20</td>
<td>0.950</td>
<td>0.925</td>
<td>0.900</td>
<td>0.880</td>
<td>0.860</td>
<td>0.835</td>
<td>0.810</td>
<td>0.790</td>
<td>0.770</td>
</tr>
<tr>
<td>30</td>
<td>0.960</td>
<td>0.935</td>
<td>0.910</td>
<td>0.890</td>
<td>0.870</td>
<td>0.845</td>
<td>0.820</td>
<td>0.800</td>
<td>0.780</td>
</tr>
<tr>
<td>40</td>
<td>0.960</td>
<td>0.940</td>
<td>0.920</td>
<td>0.895</td>
<td>0.870</td>
<td>0.850</td>
<td>0.830</td>
<td>0.805</td>
<td>0.780</td>
</tr>
<tr>
<td>50</td>
<td>0.970</td>
<td>0.950</td>
<td>0.930</td>
<td>0.905</td>
<td>0.880</td>
<td>0.860</td>
<td>0.840</td>
<td>0.815</td>
<td>0.790</td>
</tr>
<tr>
<td>60</td>
<td>0.980</td>
<td>0.955</td>
<td>0.930</td>
<td>0.910</td>
<td>0.890</td>
<td>0.865</td>
<td>0.840</td>
<td>0.820</td>
<td>0.800</td>
</tr>
<tr>
<td>70</td>
<td>0.990</td>
<td>0.965</td>
<td>0.940</td>
<td>0.920</td>
<td>0.900</td>
<td>0.875</td>
<td>0.850</td>
<td>0.830</td>
<td>0.810</td>
</tr>
<tr>
<td>80</td>
<td>0.990</td>
<td>0.970</td>
<td>0.950</td>
<td>0.925</td>
<td>0.900</td>
<td>0.880</td>
<td>0.860</td>
<td>0.835</td>
<td>0.810</td>
</tr>
<tr>
<td>90</td>
<td>1.000</td>
<td>0.980</td>
<td>0.960</td>
<td>0.935</td>
<td>0.910</td>
<td>0.890</td>
<td>0.870</td>
<td>0.845</td>
<td>0.820</td>
</tr>
<tr>
<td>100</td>
<td>1.010</td>
<td>0.985</td>
<td>0.960</td>
<td>0.940</td>
<td>0.920</td>
<td>0.895</td>
<td>0.870</td>
<td>0.850</td>
<td>0.830</td>
</tr>
<tr>
<td>120</td>
<td>1.020</td>
<td>1.000</td>
<td>0.980</td>
<td>0.960</td>
<td>0.940</td>
<td>0.915</td>
<td>0.890</td>
<td>0.870</td>
<td>0.850</td>
</tr>
<tr>
<td>140</td>
<td>1.040</td>
<td>1.020</td>
<td>1.000</td>
<td>0.975</td>
<td>0.950</td>
<td>0.930</td>
<td>0.910</td>
<td>0.885</td>
<td>0.860</td>
</tr>
<tr>
<td>160</td>
<td>1.060</td>
<td>1.035</td>
<td>1.010</td>
<td>0.990</td>
<td>0.970</td>
<td>0.945</td>
<td>0.920</td>
<td>0.900</td>
<td>0.880</td>
</tr>
<tr>
<td>180</td>
<td>1.070</td>
<td>1.050</td>
<td>1.030</td>
<td>1.005</td>
<td>0.980</td>
<td>0.960</td>
<td>0.940</td>
<td>0.915</td>
<td>0.890</td>
</tr>
<tr>
<td>200</td>
<td>1.090</td>
<td>1.065</td>
<td>1.040</td>
<td>1.020</td>
<td>1.000</td>
<td>0.975</td>
<td>0.950</td>
<td>0.930</td>
<td>0.910</td>
</tr>
<tr>
<td>220</td>
<td>1.100</td>
<td>1.080</td>
<td>1.060</td>
<td>1.035</td>
<td>1.010</td>
<td>0.990</td>
<td>0.970</td>
<td>0.945</td>
<td>0.920</td>
</tr>
</tbody>
</table>
Density (lb/ft³)

<table>
<thead>
<tr>
<th>Temp, °F</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>65.71</td>
<td>65.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>65.00</td>
<td>65.30</td>
<td>65.60</td>
<td>65.86</td>
<td>66.11</td>
<td>66.33</td>
<td>66.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>64.23</td>
<td>64.57</td>
<td>64.90</td>
<td>65.19</td>
<td>65.48</td>
<td>65.73</td>
<td>65.97</td>
<td>66.18</td>
<td>66.38</td>
</tr>
<tr>
<td>30</td>
<td>64.14</td>
<td>64.47</td>
<td>64.79</td>
<td>65.07</td>
<td>65.35</td>
<td>65.59</td>
<td>65.82</td>
<td>66.02</td>
<td>66.22</td>
</tr>
<tr>
<td>40</td>
<td>64.03</td>
<td>64.35</td>
<td>64.67</td>
<td>64.94</td>
<td>65.21</td>
<td>65.44</td>
<td>65.67</td>
<td>65.86</td>
<td>66.05</td>
</tr>
<tr>
<td>50</td>
<td>63.92</td>
<td>64.23</td>
<td>64.53</td>
<td>64.80</td>
<td>65.06</td>
<td>65.28</td>
<td>65.50</td>
<td>65.69</td>
<td>65.87</td>
</tr>
<tr>
<td>60</td>
<td>63.79</td>
<td>64.09</td>
<td>64.39</td>
<td>64.65</td>
<td>64.90</td>
<td>65.12</td>
<td>65.33</td>
<td>65.51</td>
<td>65.68</td>
</tr>
<tr>
<td>70</td>
<td>63.66</td>
<td>63.95</td>
<td>64.24</td>
<td>64.49</td>
<td>64.73</td>
<td>64.94</td>
<td>65.14</td>
<td>65.31</td>
<td>65.47</td>
</tr>
<tr>
<td>80</td>
<td>63.52</td>
<td>63.80</td>
<td>64.08</td>
<td>64.32</td>
<td>64.55</td>
<td>64.75</td>
<td>64.95</td>
<td>65.11</td>
<td>65.26</td>
</tr>
<tr>
<td>90</td>
<td>63.37</td>
<td>63.64</td>
<td>63.91</td>
<td>64.14</td>
<td>64.36</td>
<td>64.55</td>
<td>64.74</td>
<td>64.89</td>
<td>65.04</td>
</tr>
<tr>
<td>100</td>
<td>63.20</td>
<td>63.47</td>
<td>63.73</td>
<td>63.95</td>
<td>64.16</td>
<td>64.35</td>
<td>64.53</td>
<td>64.67</td>
<td>64.81</td>
</tr>
<tr>
<td>120</td>
<td>62.85</td>
<td>63.09</td>
<td>63.33</td>
<td>63.54</td>
<td>63.74</td>
<td>63.90</td>
<td>64.06</td>
<td>64.19</td>
<td>64.32</td>
</tr>
<tr>
<td>140</td>
<td>62.46</td>
<td>62.68</td>
<td>62.90</td>
<td>63.09</td>
<td>63.27</td>
<td>63.42</td>
<td>63.57</td>
<td>63.68</td>
<td>63.79</td>
</tr>
<tr>
<td>160</td>
<td>62.03</td>
<td>62.23</td>
<td>62.43</td>
<td>62.60</td>
<td>62.76</td>
<td>62.90</td>
<td>63.03</td>
<td>63.13</td>
<td>63.22</td>
</tr>
<tr>
<td>180</td>
<td>61.56</td>
<td>61.74</td>
<td>61.92</td>
<td>62.07</td>
<td>62.22</td>
<td>62.34</td>
<td>62.45</td>
<td>62.53</td>
<td>62.61</td>
</tr>
<tr>
<td>200</td>
<td>61.05</td>
<td>61.21</td>
<td>61.37</td>
<td>61.50</td>
<td>61.63</td>
<td>61.73</td>
<td>61.83</td>
<td>61.90</td>
<td>61.97</td>
</tr>
<tr>
<td>220</td>
<td>60.50</td>
<td>60.64</td>
<td>60.78</td>
<td>60.89</td>
<td>61.00</td>
<td>61.09</td>
<td>61.17</td>
<td>61.23</td>
<td>61.28</td>
</tr>
<tr>
<td>240</td>
<td>59.91</td>
<td>60.03</td>
<td>60.15</td>
<td>60.25</td>
<td>60.34</td>
<td>60.41</td>
<td>60.47</td>
<td>60.51</td>
<td>60.55</td>
</tr>
</tbody>
</table>

1 lb/ft³ = 16 kg/m³

Vapor Pressure (psia)

<table>
<thead>
<tr>
<th>Temp, °F</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>17.0</td>
<td>16.4</td>
<td>15.7</td>
<td>15.1</td>
<td>14.5</td>
<td>13.8</td>
<td>13.1</td>
<td>12.4</td>
<td>11.7</td>
</tr>
<tr>
<td>230</td>
<td>19.0</td>
<td>18.4</td>
<td>17.7</td>
<td>17.1</td>
<td>16.5</td>
<td>15.7</td>
<td>14.9</td>
<td>14.1</td>
<td>13.3</td>
</tr>
<tr>
<td>240</td>
<td>21.8</td>
<td>21.2</td>
<td>20.6</td>
<td>20.0</td>
<td>19.3</td>
<td>18.4</td>
<td>17.5</td>
<td>16.6</td>
<td>15.7</td>
</tr>
<tr>
<td>250</td>
<td>25.5</td>
<td>24.9</td>
<td>24.2</td>
<td>23.6</td>
<td>23.0</td>
<td>21.9</td>
<td>20.9</td>
<td>19.8</td>
<td>18.8</td>
</tr>
<tr>
<td>260</td>
<td>30.1</td>
<td>29.4</td>
<td>28.7</td>
<td>28.0</td>
<td>27.4</td>
<td>26.2</td>
<td>25.0</td>
<td>23.8</td>
<td>22.6</td>
</tr>
<tr>
<td>270</td>
<td>35.5</td>
<td>34.8</td>
<td>34.0</td>
<td>33.3</td>
<td>32.6</td>
<td>31.2</td>
<td>29.8</td>
<td>28.4</td>
<td>27.0</td>
</tr>
<tr>
<td>280</td>
<td>41.8</td>
<td>41.0</td>
<td>40.2</td>
<td>39.4</td>
<td>38.5</td>
<td>37.0</td>
<td>35.4</td>
<td>33.8</td>
<td>32.2</td>
</tr>
<tr>
<td>290</td>
<td>49.0</td>
<td>48.1</td>
<td>47.2</td>
<td>46.2</td>
<td>45.3</td>
<td>43.5</td>
<td>41.7</td>
<td>39.9</td>
<td>38.1</td>
</tr>
<tr>
<td>300</td>
<td>57.0</td>
<td>56.0</td>
<td>55.0</td>
<td>53.9</td>
<td>52.9</td>
<td>50.8</td>
<td>48.8</td>
<td>46.7</td>
<td>44.7</td>
</tr>
<tr>
<td>310</td>
<td>66.0</td>
<td>64.8</td>
<td>63.6</td>
<td>62.4</td>
<td>61.2</td>
<td>58.9</td>
<td>56.6</td>
<td>54.2</td>
<td>51.9</td>
</tr>
<tr>
<td>320</td>
<td>75.8</td>
<td>74.4</td>
<td>73.1</td>
<td>71.7</td>
<td>70.4</td>
<td>67.7</td>
<td>65.1</td>
<td>62.5</td>
<td>59.9</td>
</tr>
<tr>
<td>330</td>
<td>86.4</td>
<td>84.9</td>
<td>83.4</td>
<td>81.8</td>
<td>80.3</td>
<td>77.4</td>
<td>74.4</td>
<td>71.5</td>
<td>68.6</td>
</tr>
<tr>
<td>340</td>
<td>98.0</td>
<td>96.2</td>
<td>94.5</td>
<td>92.7</td>
<td>91.0</td>
<td>87.7</td>
<td>84.5</td>
<td>81.2</td>
<td>77.9</td>
</tr>
<tr>
<td>350</td>
<td>110.4</td>
<td>108.4</td>
<td>106.4</td>
<td>104.5</td>
<td>102.5</td>
<td>98.9</td>
<td>95.3</td>
<td>91.6</td>
<td>88.0</td>
</tr>
</tbody>
</table>

1 psi = 6,895 Pa = 0.069 bar = 0.0681 atm = 51.7 mmHg = 21.7 inH₂O
Product Disclaimer

The information contained in this entire publication is presented in good faith at “no charge” and is believed to be correct as of the date indicated. No representations or warranties are made as to its completeness or accuracy. The information listed is supplied upon the condition that the persons receiving it will make their own determination as to its suitability for their purposes prior to use. In no event will the seller be responsible for damages of any nature whatsoever resulting from the use of, or reliance upon, this information or the product to which this information refers. Nothing contained on this page is to be construed as a recommendation to use the product, process, equipment or formulation in conflict with any patent. No representation or warranty, expressed or implied, is made that the use of this product will not infringe any patent.

No representations or warranties, either expressed or implies, of merchantability, fitness for a particular purpose or for any other nature are made with respect to the information, or the product to which the information refers.

Contact Information

Corporate Headquarters
Dynalene, Inc.
5250 West Coplay Road
Whitehall, Pennsylvania 18052
Phone: 610-262-9686 / 1-877-244-5525
Fax: 610-262-7437
Email: info@dynalene.com
Website: www.dynalene.com

Midwest Location
248 Beinoris Dr
Wood Dale, IL 60191
Phone: 1-855-216-7639
Email: centralsales@dynalene.com

West Location
1701 S 5350 W
Salt Lake City, UT 84104
Phone: 1-877-244-5525
Email: westsales@dynalene.com

Published March 2021